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Model theft is an important concern

Machine learning models: business advantage and intellectual property (IP)

Cost of

gathering relevant data

labeling data

expertise required to choose the right model training method
resources expended in training

Adversary who steals the model can avoid these costs.



Defending against model theft

We can try to:

- prevent (or slow down) model extraction, or
« detect it

Or deter the attacker by providing the means for ownership demonstration:
« model watermarking

- data watermarking

« fingerprinting



Other ML security & privacy concerns

There are considerations other than model ownership:
« model evasion (defense: adversarial training)
 training data reconstruction (defense: differential privacy)

How does ownership demonstration interact with the other defenses?
We investigate pairwise interactions of:

model watermarking differential privacy

data watermarking WITH
fingerprinting adversarial training



Setup & Baselines

We use the following techniques (and corresponding metrics):

« Qut-of-distribution (OOD) backdoor watermarking (test and watermark accuracy)
- Radioactive data (test accuracy and loss difference)

« Dataset Inference (verification confidence)

« DP-SGD (model accuracy for the given epsilon)

« Adversarial training with PGD (test and adv. accuracy for the given epsilon)

No Dataset
Dataset defense Watermarking Radioactive Data Inference ADV. TR.
TEST TEST WM TEST Loss. Diff. Confidence TEST TEST ADW
MNIST 0.99 0.99 0.97 0.98 0.284 <e-30 0.98 0.99 0.95
FMNIST 0.91 0.87 0.99 0.88 0.19 <e-30 0.86 0.87 0.69

CIFAR10 0.92 0.82 0.97 0.85 0.2 <e-30 0.38 0.82 0.82



Interaction with differential privacy

DP-SGD
(eps=3)

Differential privacy is a strong per-sample regulariser: aaset T
« Watermarking rendered ineffective By — .
« Lower but still sufficient confidence for radioactive data EMNIST 0.86
» No effect on the DI fingerprint CIFARLO 0.38

Dataset dei!'\le?lse Watermarking Radioactive Data Dataset Inference
Baseline with DP Baseline with DP Baseline with DP
Loss. Loss.
TEST. TEST WM TEST WM TEST Diff. TEST Diff. Conf. Conf.
MNIST 0.99 0.99 0.97 0.97 0.30 0.98 0.284 0.97 0.091 <e-30 <e-30
FMNIST 0.91 0.87 0.99 0.86 0.28 0.85 0.19 0.84 0.11 <e-30 <e-30

CIFAR10 0.92 0.82 0.97 0.38 0.12 0.85 0.2 0.35 0.19 <e-30 <e-30



Interaction with DP (tweaks and relaxations)

Tweaking DP-SGD:

« Nalively increasing eps (less noise) does not improve WM accuracy
 Increasing gradient clipping threshold is better (not sufficient)

Tweaking the watermark:

« Bigger trigger set gives better WM accuracy (not sufficient)
« Training longer is better (not sufficient)

With strict DP-SGD, OOD backdoor watermarking does not work.

What if we relax DP-SGD?

 Splitting the training into the DP part (genuine data) and non-DP (watermark) helps
« Watermark is embedded successfully (accuracy > 0.9)
» Privacy loss analysis is not tight anymore



Interaction with adversarial training

ADV. TR.

Adversarial training creates arobust L_p bubble:

« Watermarking not affected but adversarial accuracy drops
« Significant drop in the confidence of radioactive data

» No effect on the DI fingerprint

Dataset TEST ADV.
MNIST 0.99 0.95
FMNIST 0.87  0.69
CIFAR10 0.82 0.82

No Watermarking Radioactive Data n
Dataset defense

with

Baseline with ADV. TR. Baseline with ADV. TR. Baseline ADV.TR.
Loss. Loss.
TEST TEST WM TEST WM ADV TEST Diff. TEST Diff. ADV Conf. Conf.
MNIST 0.99 099 097 097 099 088 0.98 0.284 0.97 0.001 0.95 <e-30 <e-30
FMNIST 0.91 087 099 086 099 051 0.85 0.19 0.84 0.0007 0.69 <e-30 <e-30

CIFAR10 0.92 082 097 0.7/8 097 065 0.85 0.2 0.81 0.003 0.81 <e-30 <e-30



False positives in Dataset Inference 1/2

We noticed false positives when DI is combined with other defenses:

« models would trigger confident FPs w.r.t. unrelated models (e.g. MNIST to FMNIST)
« Butwe saw FPs even in our DI baseline (i.e., without other defenses)

We revisited the originall DI itself (CIFAR10):
« use the implementation from the official repo?
« Models provided in the repo work as intended

« We trained many independent models:
« Without any other defense
« We can reproduce the results from the paper, however...

[1] - Dataset Inference: Ownership Resolution in Machine Learning
[2] - Dataset Inference, GitHub repository



https://openreview.net/pdf?id=hvdKKV2yt7T
https://github.com/cleverhans-lab/dataset-inference

False positives in Dataset Inference 2/2

We revisited the original® Dl itself (CIFAR10):
 The original split for CIFAR10 uses:
« the training set for the teacher model
* the test set to train the independent model
* the test set and the training set are used for the distinguisher (double-dip on the test set)

« We split CIFARL1O0 training set into two non-overlapping chunks (A and B):
« one for the teacher (A), one for the independent model (B)
« thetestand the A set are used for the distinguisher
* independent model B triggers a FP with high confidence

Model trained on: Verification p-value

A (teacher) e-23
Test (original) 0.1
B (independent) e-12

A+B e-13
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Is dataset-based fingerprinting feasible?

Yes, if model output has enough entropy to distinguish among instances of:
1. same model architecture trained on the same data

2. same model architecture trained on different data from the same distribution

3. other architectures/data distributions

Preliminary experiment — (cumulative) distance between two models' outputs:

» three models trained on MNIST chunks Aand B
« MA and MAZ2 trained on the chunk A (type 1)
* MB trained on the chunk B (type 2)

« amodel trained on the full FMNIST (FM) (type 3)

» record outputs of all models for both chunks, the MNIST test set (TE) and random data (RNG)
* notation example: output on A of a model trained using B — MB(A)
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Distinguishing models: L, & L, distance*
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Interaction between ML security/privacy techniques

Adversarial | Differential | Membership | Oblivious | Model/Gradient Model Model Model Data sy .
Property . . . . - . . o . Explainability | Fairness
Training Privacy Inference Training Inversion Poisoning | Watermarking | Fingerprinting | Watermarking
Adversarial Training X [5] 9] ? ? [7] OURS OURS OURS [11] ?
Differential Privacy X [3, 6] ? ? ? OURS OURS OURS ? [1, 2, 8]
Membership Inference X ? ? [10] ? ? ? ? ?
Oblivious Training X ? ? ? ? ? ? ?
Model/Gradient Inversion X ? ? ? ? ? ?
Model Poisoning X ? ? ? ? ?
Model Watermarking X ? ? ? ?
Model Fingerprinting X ? [4] ?
Data Watermarking X ? ?
Fairness X ?
Explainability X
REFERENCES
[1] Hongyan Chang and Reza Shokri. 2021. On the Privacy Risks of Algorithmic [6] Milad Nasr, Shuang Sengi, Abhradeep Thakurta, Nicolas Papernot, and Nicholas
Fairness. In 2021 IEEE European Symposium on Security and Privacy (EuroS P). Carlu-.l. 2021. A.dversary Instantiation: ;ower Boum.:ls for Dli'?ferentlally Private
292-303. https://doi.org/10.1109/EuroSP51992.2021.00028 hMtaCh,‘/‘;s Learning, In e ZEE Symposiurm on Security and Privacy (SF). 866-882.
ictoria Ch Vinith M. Suriyakumar, Natalie Dullerud, Shalmali Joshi, and tps://doi.org/10. . S R . —
(2] Victoria Cheng, ! : Y ’ - d o s 9 [7] Ren Pang, Hua Shen, Xinyang Zhang, Shouling Ji, Yevgeniy Vorobeychik, Xiapu
Marzyeh Ghassemi. 2021. Can You Fake It Until You Make It? Impacts of Dif- Luo, Alex Liu, and Ting Wang. 2020. A Tale of Evil Twins: Adversarial Inputs
ferentially Private Synthetic Data on Downstream Classification Fairness. In versus Poisoned Models. Association for Computing Machinery, New York, NY,
Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Trans- USA, 85-99. https://doi.org/10.1145/3372297.3417253
parency (FAccT °21). Association for Computing Machinery, New York, NY, USA, (8] Adam Pearce. 2022. Can a Model Be Differentially Private and Fair? https:
149-160. https://doi.org/10.1145/3442188.3445879 //pair.withgoogle.com/explorables/private-and-fair/. Online; accessed 7 April
. . . 2022.
(3] Thomas Humphries, Simon an' Lindsey Tulloch, Matthe?v Rlafuse, Ian G(}lfi' [9] Liwei Song, Reza Shokri, and Prateek Mittal. 2019. Privacy Risks of Securing
berg, Urs Hengartner, and Florian Ker: schbz_ium. 2020. Invezstlgatmg Membership Machine Learning Models against Adversarial Examples. In Proceedings of the
Inference Attacks under Data Dependencies. https://doi.org/10.48550/ARXIV. 2019 ACM SIGSAC Conference on Computer and Communications Security (CCS
2010.12112 ’19). Association for Computing Machinery, 241-257. https://doi.org/10.1145/
[4] Hengrui Jia, Hongyu Chen, Jonas Guan, Ali Shahin Shamsabadi, and Nicolas 3319535.3354211
Papernot. 2022. A Zest of LIME: Towards Architecture-Independent Model (10] glori*}‘:‘ Tra}r;er’ Rez?iim]}(:ii A%to? San -r”aq%i“' I;‘;ang L"i’Ma“hew ﬁgiiski,
. . . . K anghyun Hong, and Nicholas Carlini. 2022. Truth Serum: Poisoning Machine
Dlstanct?s. In Intematu?nal Confer?nce.on Learning Representations. https:// Learning Models to Reveal Their Secrets. https:/doi.org/10.48550/ARXIV.2204.
openreview.net/forum?id=0Uz_9TiTv9j 00032
[5] Mathias Lecuyer, Vaggelis Atlidakis, Roxana Geambasu, Daniel Hsu, and Suman [11] Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and
Jana. 2019. Certified Robustness to Adversarial Examples with Differential Privacy. Aleksander Madry. 2019. Robustness May Be at Odds with Accuracy. In 7th
In 2019 IEEE Symposium on Security and Privacy (SP). 656—672. https://doi.org/ International Conference on Learning Representations, ICLR 2019, New Orleans, LA, 14

10.1109/SP.2019.00044

USA, May 6-9, 2019. https://openreview.net/forum?id=SyxAb30cY7



Conclusion and next steps

In combination with other defenses, ownership verification is brittle:
« Strong regularizers patch weaknesses that WM/Radioactive data exploit
 Difficult to predict the interaction of a given pair of defenses

Thorough exploration vs. combinatorial explosion:
« We present just three pairs but there are more combinations
« What about triplets, quadruplets...?

« Within-type variation also a problem, e.g.

We focused onthe mostpopular DP-SGD
SCATTER-DP or PATE behave differently

More on our security + ML research at https://ssg.aalto.fi/research/projects/mlsec/model-extraction/
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