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Introduction
Machine Learning (ML) models are susceptible to a wide range of risks to
• Security, Privacy, and Fairness

Prior work has explored defenses to mitigate specific risks
• Defenses typically evaluated only vs. those specific risks they protect against

But practitioners need to deploy multiple defenses simultaneously
• Can two defenses interact negatively with each other?
• Does a defense exacerbate or ameliorate some other (unrelated) risk?
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Unintended interactions among defenses and risks
Unintended Interactions among defenses
Combining multiple defenses may result in conflicts
• Watermarking vs. adversarial training or differential privacy[1]

• ……. many other conflicts[2,3,4]

Unintended Interactions between a defense and other risks
An effective defense may increase or decrease susceptibility to other risks
• Limited evaluation for some risks, defenses, interactions[3,4,5] or underlying causes[3,4]

• No systematic framework to explore unintended interactions

[1] S.Szyller, N. Asokan. Conflicting Interactions Among Protection Mechanisms for Machine Learning Models. AAAI 2023. https://arxiv.org/abs/2207.01991
[2] Fioretto et al. Differential Privacy and Fairness in Decision and Learning Tasks: A Survey. IJCAI 2022. https://arxiv.org/abs/2202.08187
[3] Ferry et al. SoK: Taming the Triangle - On the Interplays between Fairness, Interpretability and Privacy in Machine Learning. arXiv 2024. https://arxiv.org/abs/2312.16191
[4] Gittens et al. An Adversarial Perspective on Accuracy, Robustness, Fairness, and Privacy: Multilateral-Tradeoffs in Trustworthy ML. IEEE Access 2024. https://ieeexplore.ieee.org/document/9933776
[5] Strobel and Shokri. Data Privacy and Trustworthy Machine Learning. IEEE S&P Magazine 2022. https://ieeexplore.ieee.org/document/9802763

https://arxiv.org/abs/2207.01991
https://arxiv.org/abs/2202.08187
https://arxiv.org/abs/2312.16191
https://ieeexplore.ieee.org/document/9933776
https://ieeexplore.ieee.org/document/9802763
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Contributions
A systematic framework for understanding unintended interactions
• overfitting & memorization conjectured as underlying causes, exploring influencing factors

Survey of existing literature on unintended interactions
• situate existing work within our framework

Guideline to conjecture previously unexplored interactions
• empirically validation for two unexplored interactions
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Background: ML risks and defenses

Defenses Risks
RD1 (Adversarial Training) 
RD2 (Outlier Removal)

R1 (Evasion)
R2 (Poisoning)

RD3 (Watermarking)
RD4 (Fingerprinting)

R3 (Unauthorized Ownership)

PD1 (Differential Privacy)

?
?

P1 (Membership Inference) 
P2 (Data Reconstruction)
P3 (Attribute Inference)
P4 (Distribution Inference)

FD1 (Group Fairness)
FD2 (Explanations)

F (Discriminatory Behaviour)

Risks to Security 
(Integrity)

Risks to Security 
(Confidentiality)

Risks to Privacy

Risks to Fairness

?: No defenses with 
theoretical guarantees
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Overview of unintended interactions
Explore pairwise interactions between each defense and all unrelated risks:

Overfitting and memorization are underlying causes (conjecture)
• Effective defenses may induce, reduce or rely on overfitting or memorization
• Risks tend to exploit overfitting or memorization

Defenses Risks
RD1 (Adversarial Training) 
RD2 (Outlier Removal)

R1 (Evasion)
R2 (Poisoning)

RD3 (Watermarking)
RD4 (Fingerprinting)

R3 (Unauthorized Ownership)

PD1 (Differential Privacy) P1 (Membership Inference) 
P2 (Data Reconstruction)
P3 (Attribute Inference)
P4 (Distribution Inference)

FD1 (Group Fairness)
FD2 (Explanations)

F (Discriminatory Behaviour)
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Underlying causes: overfitting and memorization

No Overfitting + No Memorization Overfitting + No Memorization

No Overfitting + Memorization Overfitting + Memorization

Overfitting and memorization are distinct and 
can occur simultaneously[1,2]

Overfitting
• Difference between train and test accuracy[3]

• Aggregate metric computed across datasets

Memorization of training data records
• Difference in model prediction on a data record 

with and without it in training dataset[4]

• Metric for individual data records

[1] Carlini et al. The Secret Sharer: Evaluating and testing unintended memorization in neural networks. USENIX Sec 2019. https://arxiv.org/abs/1802.08232
[2] Burg and Williams. On memorization in probabilistic deep generative models. NeurIPS 2019. https://arxiv.org/abs/2106.03216
[3] Hardt et al. Train faster, generalize better: Stability of stochastic gradient descent. ICML 2016. https://arxiv.org/abs/1509.01240
[4] Feldman. Does learning require memorization? A Short Tale About a Long Tail. STOC 2020. https://arxiv.org/abs/1906.05271

https://arxiv.org/abs/1802.08232
https://arxiv.org/abs/2106.03216
https://arxiv.org/abs/1509.01240
https://arxiv.org/abs/1906.05271
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Framework: factors influencing overfitting
Bias is an error from poor hyperparameter choices for model
• High bias (smaller models) ➞ prevents learning relations between attributes and labels
Variance is an error from sensitivity to changes in the training dataset
• High variance ➞ model fits noise in training data

Tradeoffs can be balanced using:
• D1 Size of training data inversely correlated with overfitting: likelihood that the model

encounters a similar data record is higher 
• M1 Model capacity inversely correlated with overfitting if model is too simple to fit data
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Framework: factors influencing memorization
D2 Tail length of distribution correlates with memorization of tail classes (rare or outliers)
D3 Number of attributes inversely correlates with memorization of individual attributes
D4 Priority of learning stable attributes correlates with generalization

O1 Curvature smoothness of the objective function results in variable memorization of 
data records as it determines convergence of their loss towards a minima 
O2 Distinguishability of model observables across datasets (O2.1), subgroups (O2.2),    

and models (O2.3) correlates with memorization
O3 Distance of training data to decision boundary inversely correlates with memorization

M1 Model capacity Increasing capacity can increase memorization of data records
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Revisiting ML risks and defenses

TABLE 2. SUMMARY OF CORRELATION BETWEEN EFFECTIVENESS OF A DEFENSE <d> AND SUSCEPTIBILITY TO A RISK <r> WITH A FACTOR <f>:
" INDICATES <d> OR <r> POSITIVELY CORRELATES WITH <f>; # INDICATES A NEGATIVE CORRELATION.

Defences (<" or #>, <f>) Risks (<" or #>, <f>)

RD1 (Adversarial Training):

• D1 ", |Dtr| [161]
• D2 #, tail length [71], [16]
• D4 ", priority for learning stable attributes [161]
• O1 ", curvature smoothness [102]
• O2.1 ", distinguishability in data records inside and outside Dtr [144]
• O3 ", distance to boundary for most Dtr data records [176]
• M1 ", model capacity [102]
RD2 (Outlier Removal):

• D2 ", tail length [166]
RD3 (Watermarking):

• D2 ", tail length [96]
• O2.3 #, distinguishability in observables for watermarks between f✓

and fder
✓ , but distinct from independent models [3]

• M1 ", model capacity [3]
RD4 (Fingerprinting):

• O2.3 #, distinguishability in observables for fingerprints between f✓
and fder

✓ , but distinct from independent models [165], [97]
• O3 #, distance of Dtr data records to boundary [97], [122], [21]
PD1 (Differential privacy):

• D2 #, tail length [11], [150]
• D4 ", priority for learning stable attributes [155]
• O1 #, curvature smoothness [162], [18]
• O2.1 #, distinguishability for data records inside and outside Dtr [2]
• O3 #, distance of Dtr data records to decision boundary [162]
• M1 #, model capacity [135]
FD1 (Group Fairness):

• D4 ", priority for learning stable attributes [53], [114], [1]
• O2.2 #, distinguishability of observables across subgroups [1], [189]
• O3 #, distance to decision boundary for most Dtr data records [160]
FD2 (Explanations):

• D3 #, number of input attributes [137]
• O2.1 ", distinguishability in data records inside and outside Dtr [137]
• O2.2 ", distinguishability across subgroups [44]

R1 (Evasion):

• D2 ", tail length [173], [91]
• O1 #, curvature smoothness [102]
• O3 #, distance of Dtr data records to boundary [162]
R2 (Poisoning):

• D2 ", tail length [120], [17], [96]
• M1 ", model capacity [3]
R3 (Unauthorized Model Ownership):

• M1 #, model capacity [117], [88]
P1 (Membership Inference):

• D1 #, |Dtr | [184], [136]
• D2 ", tail length [25], [24]
• D4 #, priority for learning stable attributes [103], [155]
• O2.1 ", distinguishability for data records inside and outside Dtr [136]
• O3 #, distance to decision boundary [137]
• M1 ", model capacity [144], [45]
P2 (Data Reconstruction):

• D2 ", tail length [171]
• D3 #, number of input attributes [51]
• O2.1 ", distinguishability for data records inside and outside

Dtr [199], [115]
• O2.2 ", distinguishability in observables across subgroups [180]
P3 (Attribute Inference):

• D2 ", tail length [78]
• D4 #, priority for learning stable attributes [103], [143]
• O2.2 ", distinguishability in observables across subgroups [1]
P4 (Distribution Inference):

• D2 ", tail length [30], [105]
• D4 ", priority for learning stable attributes [148]
• O2.1 ", distinguishability in observables between datasets [149], [148]
• M1 ", model capacity [30]
F (Discriminatory behaviour):

• D2 ", tail length [110]
• O2.2 ", distinguishability in observables across subgroups [189]

along with their relevant citation(s) in Table 1 and discuss
them in the text.
RD1 (Adversarial Training)

 R1 (Evasion) is less effective with RD1 which is specif-
ically designed to resist adversarial examples [102], [193],
[92]. Using the min-max objective function increases the
curvature smoothness which reduces the possibility of gen-
erating adversarial examples [102]. Further, RD1 pushes
the decision boundary away from the data records [193].
Also, f

rob
✓ requires a high capacity to learn a complex

decision boundary to fit adversarial examples [102]. Longer
tail increases the effectiveness of adversarial examples from
the tail classes despite using RD1 [91], [173].
 R2 (Poisoning) can be effective with RD1 [170]. Recall
that frob

✓ is forced to learn stable attributes. Hence, it might
seem that poisons, generated by manipulating spurious at-
tributes, does not affect frob

✓ ’s predictions [153]. However,
Wen et al. [170] design poisons to degrade f

rob
✓ ’s accuracy

by manipulating the stable attributes.
 R3 (Unauthorized model ownership) can be more
prevalent as model theft of f

rob
✓ is easier than f✓ [86].

However, no reasons were explored. We conjecture that
since f

rob
✓ has uniform predictions on neighboring data

records [82], [156], [102], [92], hence, fder
✓ requires fewer

queries compared to f✓. The above interaction assumes Adv

is a malicious suspect. For a malicious accuser, RD1 can
mitigate false claims [94], which decreases R3 ( ).
 P1 (Membership inference) is easier with RD1 [144],
[67]. Recall that RD1 modifies f

rob
✓ ’s decision boundary to

memorize adversarial examples in Dtr [144]. This increases
the influence of some records on observables. Consequently,
the distinguishability between data records inside and out-
side Dtr is higher [144]. Hence, P1 increases. Hayes et
al. [67] provably show that increasing |Dtr| lowers over-
fitting and hence, reduces P1. Further, P1 increases with
f
rob
✓ ’s capacity due to higher memorization.
 P2 (Data reconstruction) is easier with RD1 [195],
[111]: f

rob
✓ has interpretable gradients [127], which en-

hances the quality of reconstruction. Further, consistent at-
tributes across inputs, are easier to reconstruct.Finally, lower
f
rob
✓ ’s capacity increases P2 [195].
 P3 (Distribution inference) is easier as f

rob
✓ tends to

Effectiveness of defense <d> correlates with a change in factor <f>
Change in <f> correlates with change in susceptibility to risk <r> 
• ↑: positive correlation; ↓: negative correlation

Identify <f> impacted by <d>, and <r> influenced by changes in <f>
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Situating prior work in the framework
Risk increases (●) or decreases (●) or unexplored (●) when a defense is effective
Evaluate the influence of factors empirically (●), theoretically (ʘ), conjectured ( )
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Guideline for conjecturing unintended interactions
For defense <d>, risk <r> and common factor <f>, use pair of arrows that describe 
how <d> and <r> correspond to <f>

Conjectured interaction for a given <f>:
• If arrows align (↑,↑) or (↓,↓) ➞ <r> increases when <d> is effective (●)
• Else for (↑,↓) or (↓,↑) ➞ <r> decreases when <d> is effective (●)

Conjectured overall interaction: consider conjectures from all <f>s:
• If all <f> agree, then conjectured overall interaction is unanimous
• Otherwise, prioritize conjecture from dominant <f> (dominance may depend on attack)
• Value of a non-common factor may affect overall interaction 
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Dominant factors
Active factors are exploited by the attacks: O1, O2, O3

Passive factors (data/model configuration): D1, D2, D3, D4, M1

Attacks often exploit dynamic factors, we deem them “dominant”

PD1 (Differential Privacy) and R1 (Evasion)➞● [1,2]

• D2➞●; O1 ➞●; O3 ➞●

FD1 (Group Fairness) and P1 (Membership Inference) ➞●[3]

• D4➞●; O3➞●

LEGEND

O1 Curvature smoothness of the objective function
O2 Distinguishability of model observables across 

datasets (O2.1), subgroups (O2.2),  and models (O2.3) 
O3 Distance of training data to decision boundary

D1 Size of training data
D2 Tail length of distribution
D3 Number of attributes inversely
D4 Priority of learning stable attributes
M1 Model capacity

[1] Tursynbek et al. Robustness threats of Differential Privacy. NeurIPS Privacy Preserving ML Workshop. 2020. https://arxiv.org/abs/2012.07828
[2] Boenisch et al.. Gradient masking and the underestimated robustness threats of differential privacy in deep learning. ArXiv 2021. https://arxiv.org/abs/2105.07985
[3] Chang and Shokri. On the Privacy Risks of Algorithmic Fairness. EuroS&P 2021. https://arxiv.org/abs/2011.03731

https://arxiv.org/abs/2012.07828
https://arxiv.org/abs/2105.07985
https://arxiv.org/abs/2011.03731
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Group fairness (FD1) vs. data reconstruction (P2)
Conjectured Interaction from common factor:
O2.2 Distinguishability across subgroups: FD1 ↓, P2 ↑ (➞●)
Non-common factor: D3 # Attributes -- risk may decrease with D3

Empirical Evidence
Fair model ➞ lower attack success (confirms ●) 
• Lowers distinguishability across subgroups

Non-common factor D3

# attributes = 10: 
• Fair model ➞ lower attack success
# attributes > 10: 
• Fair model ➞ no change in attack success

(note: # attributes do not affect accuracy drop caused by fairness)

Metric Baseline Fair Model

Accuracy 84.40 ± 0.09 77.96 ± 0.58

Recon. Loss 0.85 ± 0.01 0.95 ± 0.02

#Attributes Baseline Fair Model

Recon. Loss Accuracy Recon. Loss Accuracy

10 0.85 ± 0.01 84.40 ± 0.09 0.95 ± 0.02 78.96 ± 0.58

20 0.93 ± 0.03 84.72 ± 0.22 0.93 ± 0.00 80.32 ± 1.12

30 0.95 ± 0.02 84.41 ± 0.39 0.94 ± 0.00 79.50 ±0.91
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Explanations (FD2) vs. distribution inference (P4) (1/2)
Conjectured interactions from common factor:
O2.1 Distinguishability of observables across datasets: FD2 ↑ , P4 ↑ (➞●)
Non-common factors: 

D3 # Attributes: risk may decrease with D3 (lower memorization)
M1 Model Capacity: risk may increase with M1 (higher memorization)

Empirical Evidence (confirms ●)
Explanations ➞ increased susceptibility to inference: attack accuracy > 50% for most ratios

Integrated Gradients SmoothGrad DeepLift
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Explanations (FD2) vs. distribution inference (P4) (2/2)
Non-common factor D3 (# Attributes): More attributes ➞ lower attack success

Non-common factor M1 (Model Capacity): Higher capacity ➞ higher attack success

# Parameters Integrated
Gradients

DeepLift SmoothGrad

5.7K 47.57 ± 4.25 49.19 ± 2.75 53.26 ± 0.10

44K 53.29 ± 3.65 50.86 ± 3.24 62.40 ± 0.95

274K 62.60 ± 2.74 67.73 ± 1.69 70.21 ± 0.73

733K 69.90 ± 3.24 73.78 ± 1.03 74.09 ± 2.17

# Attributes Integrated
Gradients

DeepLift SmoothGrad

15 81.07 ± 2.13 78.74 ± 1.66 65.40 ± 1.39

25 66.09 ± 0.95 73.64 ± 1.38 59.42 ± 1.09

35 50.43 ± 0.59 59.93 ± 2.81 56.78 ± 1.93
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Exceptions to guideline
Differences in adversary models can change the interaction type
• RD1 (Adversarial training) and R3 (Unauthorized Model Ownership)

• Guideline predicts ➞● (M1 but not dominant) 
• If adversary is malicious suspect➞●[1]; If adversary is malicious accuser➞●[2]

• PD1 (Differential privacy) and P4 (Distribution Inference)
• Guideline predicts ➞● (O2.1) which matches with empirical evidence[3]

• If adversary knows victim is DP-trained, they can DP-train shadow models➞●[3] 

• FD1 (Group fairness) and P3 (Attribute Inference)
• Guideline predicts ➞● (O2.2) which matches with empirical evidence[4]

• If adversary knows fairness algorithm, they can calibrate their attack➞●[5] 

Some defenses and risks have too few factors
• RD2 (Outlier removal), R2 (Poisoning), R3 (Unauthorized model ownership)

[1] Khaled et al. Careful What You Wish For: On the Extraction of Adversarially Trained Models. PST 2022. https://arxiv.org/abs/2207.10561
[2] Liu et al. False Claims against Model Ownership Resolution. Usenix SEC 2024. https://arxiv.org/abs/2304.06607
[3] Suri et al. Dissecting Distribution Inference. SatML 2023. https://arxiv.org/abs/2212.07591
[4] Aalmoes et al. On the alignment of Group Fairness with Attribute Privacy. ArXiv 2022. https://arxiv.org/html/2211.10209v2
[5] Ferry et al. Exploiting Fairness to Enhance Sensitive Attributes Reconstruction. SatML 2023. https://arxiv.org/abs/2209.01215

https://arxiv.org/abs/2207.10561
https://arxiv.org/abs/2304.06607
https://arxiv.org/abs/2212.07591
https://arxiv.org/html/2211.10209v2
https://arxiv.org/abs/2209.01215
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Current work
Unexplored Interactions:
• RD1 (Adversarial Training) ➞ P3 (Attribute Inference) 
• RD2 (Outlier Removal) ➞ R3 (Unauthorized Model Ownership) 
• RD2 (Outlier Removal) ➞ P2 (Data Reconstruction)
• RD2 (Outlier Removal) ➞ P4 (Distribution Inference)
• RD3 (Watermarking) ➞ R1 (Evasion)
• RD4 (Fingerprinting) ➞ R2 (Poisoning)
• RD4 (Fingerprinting) ➞ P2 (Data Reconstruction)
• RD4 (Fingerprinting) ➞ P3 (Attribute Inference)
• RD4 (Fingerprinting) ➞ P4 (Distribution Inference)
• PD1 (Differential Privacy) ➞ R3 (Unauthorized Model Ownership) 
• FD1 (Group Fairness) ➞ R3 (Unauthorized Model Ownership) 

Developing a software framework for systematic empirical evaluation

Need to understand impact of defense/risk variants on their interactions



19

Takeaways
Unintended interactions are an important concern in practice

Common influencing factors can help identify such interactions

Current: systematic empirical evaluation of unintended interactions

Future: how to design defenses to minimize increases in other risks?

V. Duddu, S.Szyller, N. Asokan. SoK: Unintended Interactions among Machine Learning Defenses and Risks, IEEE S&P ‘24. https://arxiv.org/abs/2312.04542

ML Sec/Priv Research @ Secure Systems Group
https://ssg-research.github.io/mlsec/

https://arxiv.org/abs/2312.04542
https://ssg-research.github.io/mlsec/

