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Goal: run the server’s confidential code over client’s confidential data

• Initial target: Outsourced ML inference and/or training

How can the client avoid revealing data to the service provider?

• Fully-Homomorphic Encryption: slow due to computational overhead

• Multi-Party Computation: slow due to network overhead

• Hardware-based isolation + remote attestation: fast

Scenario: outsourced computation

Client Server

Server sees sensitive data

Result
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Protection provided by TEEs comes with caveats 

TEEs provide an isolated environment for execution of software
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Protection provided by TEEs comes with caveats 

TEEs provide an isolated environment for execution of software

TEEs are unsuitable when server code is confidential or unverifiable

• TEEs intended for clients to run code they trust and can verify

Confidentiality of client data in TEEs is hampered by:

• Large TEE code base → vulnerable to software flaws

• Sharing resources → vulnerable to side channels
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Is Confidentiality vs. Performance a tradeoff?
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What can be done?

1. Prevent application software from leaking sensitive data

• Use hardware-assisted taint-tracking

• Need not verify trustworthiness of application s/w

2. Minimize resource sharing

• Move critical operations to a fixed-function, isolated module (HSM)

• All HSM code analyzed in advance, guaranteed not to be malicious
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Prevent leakage of sensitive data via CPU extensions

“Safe” streams of instructions don’t expose sensitive data

Allowed:

• Computation on sensitive data by arbitrary, unattested, untrusted software

Prohibited:

• Leaking sensitive data into any observable state, e.g.: peripherals outside 

security boundary, microarchitectural state

Use taint-tracking-based security policy to limit sensitive data to safe places

6



Combine with attestable HSM to assure clients

Remote attestation assures use of client data is subject to security policy

Client

Server
CPU extensions +

fixed-function HSM

Application 

S/W
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How does this taint-tracking policy work?
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Taint tracking policy

Registers/memory have an associated “sensitive” bit (“Blinded“)

Ideal rule:

Blinded(outputm) ← ∃n,m: Blinded(inputₙ) ∧ Depends(outputm on inputₙ)
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Taint tracking policy

Registers/memory have an associated “sensitive” bit (“Blinded“)

Ideal rule:

Blinded(outputm) ← ∃n,m: Blinded(inputₙ) ∧ Depends(outputm on inputₙ)

Goal: changes in sensitive state never affect non-sensitive state

Register A

Register B Blinded = 1

jmp in B PC Cannot become blinded
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Thinking beyond registers and memory
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12



Thinking beyond registers and memory

Taint-propagation rule must consider many different observable outputs

• Registers

• Memory values

• Control flow

• Exceptions

• Memory access patterns

Not all of these outputs can be marked as Blinded

12



Thinking beyond registers and memory

Taint-propagation rule must consider many different observable outputs

• Registers

• Memory values

• Control flow

• Exceptions

• Memory access patterns

Not all of these outputs can be marked as Blinded

Data flows from Blinded values to “un-markable” outputs must yield a fault
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Putting it all together…
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BliMe Architecture
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BliMe Architecture

1. Handshake (incl. remote attestation)

2. Shared secret key

3. Atomic data import (inputs)

• Decrypt & blind (Blinded ← true)

4. Safe (“blinded”) computation

• Enforced by BliMe HW extensions

5. Atomic data export (result)

• Encrypt & unblind (Blinded ← false)

Fixed-function 

HSM

CPU with our 

extensions

HSM

Blinded

Server
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BliMe-BOOM Implementation

On speculative OoO RISC-V BOOM core

Tagged memory: each word can be marked as blinded

•
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BliMe-BOOM Implementation

On speculative OoO RISC-V BOOM core

Tagged memory: each word can be marked as blinded

Instructions to mark physical memory as

• Blinded or non-Blinded

Implements taint-tracking for all instructions

• Blinded(outputs) ← Blinded(input₁) ∨ Blinded(input₂) ∨ …

instr
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Speculative out-of-order execution

Same security policy enforced during speculation

Instructions causing side-channel leakage (even speculatively) will fault

Blindedness must be tracked throughout the processor microarchitecture

• Registers, load/store queue entries, line fill buffers, etc.

• Ensured by Chisel RTL type system

16



Handling multiple clients simultaneously

So far, one Blinded bit for many clients

• Server can send sensitive data to the wrong client
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Handling multiple clients simultaneously

So far, one Blinded bit for many clients

• Server can send sensitive data to the wrong client

We need a separate sensitivity domain for each client

• Prevent clients accessing each other’s sensitive data

• Keys need to be swapped in and out for each client

Solution: Hardware support

• Hardware keeps track of sensitivity domains: multibit Blindedness tag

• Secure despite malicious OS

17



Evaluation

Compatibility: Tested with side-channel-resistant crypto library (TweetNaCl)

• Side-channel-resistant crypto runs without modifications

Overheads:

Type ∆

LUTs & Registers +9.0%

Power +1.4%

Performance (SPEC17) +8%

FPGA

FPGA

gem5
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Security: Formal verification in F*

Goal: changes in blinded state never affect non-blinded state

(*******************************************************************************
* Equivalence-based safety.
*
* We define safety in this case to be that the system is safe if executing on
* equivalent (and so indistinguishable) states always results in equivalent
* output states.
*******************************************************************************)
let equivalent_inputs_yield_equivalent_states (exec:execution_unit) (pre1 pre2 : systemState) =

equiv_system pre1 pre2 ⇒ equiv_system (step exec pre1) (step exec pre2) 

let is_safe (exec:execution_unit) =
∀ (pre1 pre2 : systemState). equivalent_inputs_yield_equivalent_states exec pre1 pre2

https://blinded-computation.github.io/blime-model/
19
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Generating compliant code with LLVM

Problem: software might not run as-is

• BliMe hardware extensions will abort non-compliant code

Creating compliant code by hand is error prone

• High-level verification often insufficient

• Challenge exacerbated due to obtuse compiler behavior

• Usability/deployability challenge, not security

Challenge: solutions like Constantine[B+21] are not applicable as-is

• Uses dynamic profiling; under-approximates taint (best-effort approach)

[B+21] "Constantine: Automatic Side-Channel Resistance Using Efficient Control and Data Flow Linearization”, ACM CCS (2021)

TensorFlow Lite hand-

ported to run on BliMe
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[B+21] "Constantine: Automatic Side-Channel Resistance Using Efficient Control and Data Flow Linearization”, ACM CCS (2021)

TensorFlow Lite hand-

ported to run on BliMe

Ongoing work
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Summary

BliMe provides FHE-style security, but efficiently

Safely run untrusted code on sensitive data

Implemented for BOOM (speculative OoO CPU core)

Ongoing work: compiler support for usability

Paper, source code, 

formal model

ssg-research.github.io

/platsec/blime/
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How to deal with exceptions

Examples of data-dependent exceptions:

• Division by zero

• Floating-point exceptions

• …

Instructions must not raise an exception based on data-dependent conditions

Solutions:

• Unconditional faults (i.e., division by sensitive values always fails)

• Set a sensitive error flag and continue computation



Handling multiple clients simultaneously

Solution 1: BliMe-BOOM-1 + Isolation by honest-but-curious server OS 

• OS keeps track of sensitivity domains

• Requires only single Blinded bit from HW: low memory overhead

• Rely on remote attestation of the entire OS to convince client 

Solution 2: BliMe-BOOM-N -- Hardware support for multiple clients

• Hardware keeps track of sensitivity domains: multibit Blindedness tag

• Secure despite malicious OS

• Needs extra memory/logic to keep track of domain identifier for each granule



Generating compliant code with LLVM: our solution

Solution: Use static analysis to propagate taint

• Trade-off: over-approximation

Use SVF[S+16] as a starting point

SVF provides static value-flow graph

• Shows value dependencies within program

Identify and transform potential violations

• Apply data- and control-flow linearization

[S+16] "SVF: interprocedural static value-flow analysis in LLVM”, ACM International Conference on Compiler Construction (2016)

https://doi.org/10.1145/2892208.2892235


Control-flow linearization

Control-flow decisions can leak data

• Timing, cache, branch predictor 

side channels

Linearization allows “branching” 

code

• Executes all branches but keeps 

only desired results

if (secret) {      // affects branch predictor

arr[0] = X;    // affects cache

} else {

arr[1] = X;    // affects cache

}

taken = secret;

// if block always executed

old = arr[0];

arr[0] = (taken ? X : old);

// else block always executed

old = arr[1];

arr[1] = (!taken ? X : old);



Data-flow linearization

Memory accesses can leak 

information

• Secret-dependent memory access 

can leak information through side-

channels

Linearization removes data-

dependence

• Always access each cache line

• stride = cacheLineSize

Array

0

1

2

3

4

5

Cache line 

size

Array

0

1

2

3

4

5

Cache line 

size

Offset
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