
BliMe:
Verifiably Secure Outsource Computation
with Hardware-Enforced Taint Tracking

Hossam ElAtali, Lachlan J. Gunn, Hans Liljestrand, N. Asokan

elatalhm.github.io

Goal: run the server’s confidential code over client’s confidential data

• Initial target: Outsourced ML inference and/or training

•

•

•

Scenario: outsourced computation

Client Server

Secret
Secret

2

Goal: run the server’s confidential code over client’s confidential data

• Initial target: Outsourced ML inference and/or training

•

•

•

Scenario: outsourced computation

Client Server

2

Goal: run the server’s confidential code over client’s confidential data

• Initial target: Outsourced ML inference and/or training

•

•

•

Scenario: outsourced computation

Client Server

Server sees sensitive data

2

Goal: run the server’s confidential code over client’s confidential data

• Initial target: Outsourced ML inference and/or training

•

•

•

Scenario: outsourced computation

Client Server

Server sees sensitive data

Result

2

Goal: run the server’s confidential code over client’s confidential data

• Initial target: Outsourced ML inference and/or training

•

•

•

Scenario: outsourced computation

Client Server

Server sees sensitive data

Result

2

Goal: run the server’s confidential code over client’s confidential data

• Initial target: Outsourced ML inference and/or training

How can the client avoid revealing data to the service provider?

• Fully-Homomorphic Encryption: slow due to computational overhead

• Multi-Party Computation: slow due to network overhead

•

Scenario: outsourced computation

Client Server

Server sees sensitive data

Result

2

Goal: run the server’s confidential code over client’s confidential data

• Initial target: Outsourced ML inference and/or training

How can the client avoid revealing data to the service provider?

• Fully-Homomorphic Encryption: slow due to computational overhead

• Multi-Party Computation: slow due to network overhead

• Hardware-based isolation + remote attestation: fast

Scenario: outsourced computation

Client Server

Server sees sensitive data

Result

2

Protection provided by TEEs comes with caveats

TEEs provide an isolated environment for execution of software

3

Protection provided by TEEs comes with caveats

TEEs provide an isolated environment for execution of software

TEEs are unsuitable when server code is confidential or unverifiable

• TEEs intended for clients to run code they trust and can verify

3

Protection provided by TEEs comes with caveats

TEEs provide an isolated environment for execution of software

TEEs are unsuitable when server code is confidential or unverifiable

• TEEs intended for clients to run code they trust and can verify

Confidentiality of client data in TEEs is hampered by:

• Large TEE code base → vulnerable to software flaws

• Sharing resources → vulnerable to side channels

3

Is Confidentiality vs. Performance a tradeoff?

High

performance

Low

performance

Low

confidentiality

High

confidentiality

+ current TEEs

Vanilla outsourced

computing

Fully-Homomorphic

Encryption

4

Is Confidentiality vs. Performance a tradeoff?

High

performance

Low

performance

Low

confidentiality

High

confidentiality

+ current TEEs

Vanilla outsourced

computing

Fully-Homomorphic

Encryption

Our goal

4

What can be done?

1. Prevent application software from leaking sensitive data

• Use hardware-assisted taint-tracking

• Need not verify trustworthiness of application s/w

2. Minimize resource sharing

• Move critical operations to a fixed-function, isolated module (HSM)

• All HSM code analyzed in advance, guaranteed not to be malicious

5

Prevent leakage of sensitive data via CPU extensions

“Safe” streams of instructions don’t expose sensitive data

Allowed:

• Computation on sensitive data by arbitrary, unattested, untrusted software

Prohibited:

• Leaking sensitive data into any observable state, e.g.: peripherals outside

security boundary, microarchitectural state

Use taint-tracking-based security policy to limit sensitive data to safe places

6

Combine with attestable HSM to assure clients

Remote attestation assures use of client data is subject to security policy

Client

Server
CPU extensions +

fixed-function HSM

Application

S/W

7

Combine with attestable HSM to assure clients

Remote attestation assures use of client data is subject to security policy

Client

Server
CPU extensions +

fixed-function HSM

Application

S/W

7

Combine with attestable HSM to assure clients

Remote attestation assures use of client data is subject to security policy

Client

Server
CPU extensions +

fixed-function HSM

Application

S/W

Blinded

7

Combine with attestable HSM to assure clients

Remote attestation assures use of client data is subject to security policy

Client

Server
CPU extensions +

fixed-function HSM

Application

S/W

Blinded

7

Combine with attestable HSM to assure clients

Remote attestation assures use of client data is subject to security policy

Client

Server
CPU extensions +

fixed-function HSM

Application

S/W

Blinded

7

Combine with attestable HSM to assure clients

Remote attestation assures use of client data is subject to security policy

Client

Server
CPU extensions +

fixed-function HSM

Application

S/W

7

Combine with attestable HSM to assure clients

Remote attestation assures use of client data is subject to security policy

Client

Server
CPU extensions +

fixed-function HSM

Application

S/W

7

How does this taint-tracking policy work?

8

Taint tracking policy

Registers/memory have an associated “sensitive” bit (“Blinded“)

Ideal rule:

Blinded(outputm) ← ∃n,m: Blinded(inputₙ) ∧ Depends(outputm on inputₙ)

9

Taint tracking policy

Registers/memory have an associated “sensitive” bit (“Blinded“)

Ideal rule:

Blinded(outputm) ← ∃n,m: Blinded(inputₙ) ∧ Depends(outputm on inputₙ)

Goal: changes in sensitive state never affect non-sensitive state

9

Taint tracking policy

Registers/memory have an associated “sensitive” bit (“Blinded“)

Ideal rule:

Blinded(outputm) ← ∃n,m: Blinded(inputₙ) ∧ Depends(outputm on inputₙ)

Goal: changes in sensitive state never affect non-sensitive state

Register A

Register B Blinded = 1

9

Taint tracking policy

Registers/memory have an associated “sensitive” bit (“Blinded“)

Ideal rule:

Blinded(outputm) ← ∃n,m: Blinded(inputₙ) ∧ Depends(outputm on inputₙ)

Goal: changes in sensitive state never affect non-sensitive state

instn out A, in B, in A
Register A

Register B Blinded = 1

9

Taint tracking policy

Registers/memory have an associated “sensitive” bit (“Blinded“)

Ideal rule:

Blinded(outputm) ← ∃n,m: Blinded(inputₙ) ∧ Depends(outputm on inputₙ)

Goal: changes in sensitive state never affect non-sensitive state

instn out A, in B, in A
Register A

Register B Blinded = 1

Blinded = 1

9

Taint tracking policy

Registers/memory have an associated “sensitive” bit (“Blinded“)

Ideal rule:

Blinded(outputm) ← ∃n,m: Blinded(inputₙ) ∧ Depends(outputm on inputₙ)

Goal: changes in sensitive state never affect non-sensitive state

instn out A, in B, in A

instn out A

Register A

Register B Blinded = 1

Blinded = 1

9

Taint tracking policy

Registers/memory have an associated “sensitive” bit (“Blinded“)

Ideal rule:

Blinded(outputm) ← ∃n,m: Blinded(inputₙ) ∧ Depends(outputm on inputₙ)

Goal: changes in sensitive state never affect non-sensitive state

instn out A, in B, in A

instn out A

Register A

Register B Blinded = 1

9

Thinking beyond registers and memory

Taint-propagation rule must consider many different observable outputs

• Registers

• Memory values

10

Thinking beyond registers and memory

Taint-propagation rule must consider many different observable outputs

• Registers

• Memory values

• Control flow

10

Taint tracking policy

Registers/memory have an associated “sensitive” bit (“Blinded“)

Ideal rule:

Blinded(outputm) ← ∃n,m: Blinded(inputₙ) ∧ Depends(outputm on inputₙ)

Goal: changes in sensitive state never affect non-sensitive state

Register A

Register B Blinded = 1

jmp in B PC

11

Taint tracking policy

Registers/memory have an associated “sensitive” bit (“Blinded“)

Ideal rule:

Blinded(outputm) ← ∃n,m: Blinded(inputₙ) ∧ Depends(outputm on inputₙ)

Goal: changes in sensitive state never affect non-sensitive state

Register A

Register B Blinded = 1

jmp in B PC

11

Taint tracking policy

Registers/memory have an associated “sensitive” bit (“Blinded“)

Ideal rule:

Blinded(outputm) ← ∃n,m: Blinded(inputₙ) ∧ Depends(outputm on inputₙ)

Goal: changes in sensitive state never affect non-sensitive state

Register A

Register B Blinded = 1

jmp in B PC

11

Taint tracking policy

Registers/memory have an associated “sensitive” bit (“Blinded“)

Ideal rule:

Blinded(outputm) ← ∃n,m: Blinded(inputₙ) ∧ Depends(outputm on inputₙ)

Goal: changes in sensitive state never affect non-sensitive state

Register A

Register B Blinded = 1

jmp in B PC Cannot become blinded

11

Thinking beyond registers and memory

Taint-propagation rule must consider many different observable outputs

• Registers

• Memory values

• Control flow

12

Thinking beyond registers and memory

Taint-propagation rule must consider many different observable outputs

• Registers

• Memory values

• Control flow

• Exceptions

• Memory access patterns

Not all of these outputs can be marked as Blinded

12

Thinking beyond registers and memory

Taint-propagation rule must consider many different observable outputs

• Registers

• Memory values

• Control flow

• Exceptions

• Memory access patterns

Not all of these outputs can be marked as Blinded

Data flows from Blinded values to “un-markable” outputs must yield a fault

12

Putting it all together…

13

BliMe Architecture

HSM

Blinded

Server

14

BliMe Architecture

CPU with our

extensions

HSM

Blinded

Server

14

BliMe Architecture

1. Handshake (incl. remote attestation)

Fixed-function

HSM

CPU with our

extensions

HSM

Blinded

Server

14

BliMe Architecture

1. Handshake (incl. remote attestation)

2. Shared secret key

Fixed-function

HSM

CPU with our

extensions

HSM

Blinded

Server

14

BliMe Architecture

1. Handshake (incl. remote attestation)

2. Shared secret key

3. Atomic data import (inputs)

• Decrypt & blind (Blinded ← true)

Fixed-function

HSM

CPU with our

extensions

HSM

Blinded

Server

14

BliMe Architecture

1. Handshake (incl. remote attestation)

2. Shared secret key

3. Atomic data import (inputs)

• Decrypt & blind (Blinded ← true)

4. Safe (“blinded”) computation

• Enforced by BliMe HW extensions

Fixed-function

HSM

CPU with our

extensions

HSM

Blinded

Server

14

BliMe Architecture

1. Handshake (incl. remote attestation)

2. Shared secret key

3. Atomic data import (inputs)

• Decrypt & blind (Blinded ← true)

4. Safe (“blinded”) computation

• Enforced by BliMe HW extensions

5. Atomic data export (result)

• Encrypt & unblind (Blinded ← false)

Fixed-function

HSM

CPU with our

extensions

HSM

Blinded

Server

14

BliMe-BOOM Implementation

On speculative OoO RISC-V BOOM core

Tagged memory: each word can be marked as blinded

•

15

BliMe-BOOM Implementation

On speculative OoO RISC-V BOOM core

Tagged memory: each word can be marked as blinded

Instructions to mark physical memory as

• Blinded or non-Blinded

15

BliMe-BOOM Implementation

On speculative OoO RISC-V BOOM core

Tagged memory: each word can be marked as blinded

Instructions to mark physical memory as

• Blinded or non-Blinded

Implements taint-tracking for all instructions

15

BliMe-BOOM Implementation

On speculative OoO RISC-V BOOM core

Tagged memory: each word can be marked as blinded

Instructions to mark physical memory as

• Blinded or non-Blinded

Implements taint-tracking for all instructions

• Blinded(outputs) ← Blinded(input₁) ∨ Blinded(input₂) ∨ …

instr

15

Speculative out-of-order execution

Same security policy enforced during speculation

Instructions causing side-channel leakage (even speculatively) will fault

Blindedness must be tracked throughout the processor microarchitecture

• Registers, load/store queue entries, line fill buffers, etc.

• Ensured by Chisel RTL type system

16

Handling multiple clients simultaneously

So far, one Blinded bit for many clients

• Server can send sensitive data to the wrong client

17

Handling multiple clients simultaneously

So far, one Blinded bit for many clients

• Server can send sensitive data to the wrong client

We need a separate sensitivity domain for each client

• Prevent clients accessing each other’s sensitive data

• Keys need to be swapped in and out for each client

17

Handling multiple clients simultaneously

So far, one Blinded bit for many clients

• Server can send sensitive data to the wrong client

We need a separate sensitivity domain for each client

• Prevent clients accessing each other’s sensitive data

• Keys need to be swapped in and out for each client

Solution: Hardware support

• Hardware keeps track of sensitivity domains: multibit Blindedness tag

• Secure despite malicious OS

17

Evaluation

Compatibility: Tested with side-channel-resistant crypto library (TweetNaCl)

• Side-channel-resistant crypto runs without modifications

Overheads:

Type ∆

LUTs & Registers +9.0%

Power +1.4%

Performance (SPEC17) +8%

FPGA

FPGA

gem5

18

Security: Formal verification in F*

Goal: changes in blinded state never affect non-blinded state

(***
* Equivalence-based safety.
*
* We define safety in this case to be that the system is safe if executing on
* equivalent (and so indistinguishable) states always results in equivalent
* output states.
***)
let equivalent_inputs_yield_equivalent_states (exec:execution_unit) (pre1 pre2 : systemState) =

equiv_system pre1 pre2 ⇒ equiv_system (step exec pre1) (step exec pre2)

let is_safe (exec:execution_unit) =
∀ (pre1 pre2 : systemState). equivalent_inputs_yield_equivalent_states exec pre1 pre2

https://blinded-computation.github.io/blime-model/
19

https://blinded-computation.github.io/blime-model/

Generating compliant code with LLVM

Problem: software might not run as-is

• BliMe hardware extensions will abort non-compliant code

Creating compliant code by hand is error prone

• High-level verification often insufficient

• Challenge exacerbated due to obtuse compiler behavior

• Usability/deployability challenge, not security

Challenge: solutions like Constantine[B+21] are not applicable as-is

• Uses dynamic profiling; under-approximates taint (best-effort approach)

[B+21] "Constantine: Automatic Side-Channel Resistance Using Efficient Control and Data Flow Linearization”, ACM CCS (2021)

TensorFlow Lite hand-

ported to run on BliMe

20

https://doi.org/10.1145/3460120.3484583

Generating compliant code with LLVM

Problem: software might not run as-is

• BliMe hardware extensions will abort non-compliant code

Creating compliant code by hand is error prone

• High-level verification often insufficient

• Challenge exacerbated due to obtuse compiler behavior

• Usability/deployability challenge, not security

Challenge: solutions like Constantine[B+21] are not applicable as-is

• Uses dynamic profiling; under-approximates taint (best-effort approach)

[B+21] "Constantine: Automatic Side-Channel Resistance Using Efficient Control and Data Flow Linearization”, ACM CCS (2021)

TensorFlow Lite hand-

ported to run on BliMe

Ongoing work

20

https://doi.org/10.1145/3460120.3484583

Summary

BliMe provides FHE-style security, but efficiently

Safely run untrusted code on sensitive data

Implemented for BOOM (speculative OoO CPU core)

Ongoing work: compiler support for usability

Paper, source code,

formal model

ssg-research.github.io

/platsec/blime/

21

https://ssg-research.github.io/platsec/blime/
https://ssg-research.github.io/platsec/blime/

How to deal with exceptions

Examples of data-dependent exceptions:

• Division by zero

• Floating-point exceptions

• …

Instructions must not raise an exception based on data-dependent conditions

Solutions:

• Unconditional faults (i.e., division by sensitive values always fails)

• Set a sensitive error flag and continue computation

Handling multiple clients simultaneously

Solution 1: BliMe-BOOM-1 + Isolation by honest-but-curious server OS

• OS keeps track of sensitivity domains

• Requires only single Blinded bit from HW: low memory overhead

• Rely on remote attestation of the entire OS to convince client

Solution 2: BliMe-BOOM-N -- Hardware support for multiple clients

• Hardware keeps track of sensitivity domains: multibit Blindedness tag

• Secure despite malicious OS

• Needs extra memory/logic to keep track of domain identifier for each granule

Generating compliant code with LLVM: our solution

Solution: Use static analysis to propagate taint

• Trade-off: over-approximation

Use SVF[S+16] as a starting point

SVF provides static value-flow graph

• Shows value dependencies within program

Identify and transform potential violations

• Apply data- and control-flow linearization

[S+16] "SVF: interprocedural static value-flow analysis in LLVM”, ACM International Conference on Compiler Construction (2016)

https://doi.org/10.1145/2892208.2892235

Control-flow linearization

Control-flow decisions can leak data

• Timing, cache, branch predictor

side channels

Linearization allows “branching”

code

• Executes all branches but keeps

only desired results

if (secret) { // affects branch predictor

arr[0] = X; // affects cache

} else {

arr[1] = X; // affects cache

}

taken = secret;

// if block always executed

old = arr[0];

arr[0] = (taken ? X : old);

// else block always executed

old = arr[1];

arr[1] = (!taken ? X : old);

Data-flow linearization

Memory accesses can leak

information

• Secret-dependent memory access

can leak information through side-

channels

Linearization removes data-

dependence

• Always access each cache line

• stride = cacheLineSize

Array

0

1

2

3

4

5

Cache line

size

Array

0

1

2

3

4

5

Cache line

size

Offset

	Slide 1: BliMe: Verifiably Secure Outsource Computation with Hardware-Enforced Taint Tracking
	Slide 2: Scenario: outsourced computation
	Slide 3: Scenario: outsourced computation
	Slide 4: Scenario: outsourced computation
	Slide 5: Scenario: outsourced computation
	Slide 6: Scenario: outsourced computation
	Slide 7: Scenario: outsourced computation
	Slide 8: Scenario: outsourced computation
	Slide 9: Protection provided by TEEs comes with caveats
	Slide 10: Protection provided by TEEs comes with caveats
	Slide 11: Protection provided by TEEs comes with caveats
	Slide 12: Is Confidentiality vs. Performance a tradeoff?
	Slide 13: Is Confidentiality vs. Performance a tradeoff?
	Slide 14: What can be done?
	Slide 15: Prevent leakage of sensitive data via CPU extensions
	Slide 16: Combine with attestable HSM to assure clients
	Slide 17: Combine with attestable HSM to assure clients
	Slide 18: Combine with attestable HSM to assure clients
	Slide 19: Combine with attestable HSM to assure clients
	Slide 20: Combine with attestable HSM to assure clients
	Slide 21: Combine with attestable HSM to assure clients
	Slide 22: Combine with attestable HSM to assure clients
	Slide 23: How does this taint-tracking policy work?
	Slide 24: Taint tracking policy
	Slide 25: Taint tracking policy
	Slide 26: Taint tracking policy
	Slide 27: Taint tracking policy
	Slide 28: Taint tracking policy
	Slide 29: Taint tracking policy
	Slide 30: Taint tracking policy
	Slide 31: Thinking beyond registers and memory
	Slide 32: Thinking beyond registers and memory
	Slide 33: Taint tracking policy
	Slide 34: Taint tracking policy
	Slide 35: Taint tracking policy
	Slide 36: Taint tracking policy
	Slide 37: Thinking beyond registers and memory
	Slide 38: Thinking beyond registers and memory
	Slide 39: Thinking beyond registers and memory
	Slide 40: Putting it all together…
	Slide 41: BliMe Architecture
	Slide 42: BliMe Architecture
	Slide 43: BliMe Architecture
	Slide 44: BliMe Architecture
	Slide 45: BliMe Architecture
	Slide 46: BliMe Architecture
	Slide 47: BliMe Architecture
	Slide 48: BliMe-BOOM Implementation
	Slide 49: BliMe-BOOM Implementation
	Slide 50: BliMe-BOOM Implementation
	Slide 51: BliMe-BOOM Implementation
	Slide 52: Speculative out-of-order execution
	Slide 53: Handling multiple clients simultaneously
	Slide 54: Handling multiple clients simultaneously
	Slide 55: Handling multiple clients simultaneously
	Slide 56: Evaluation
	Slide 57: Security: Formal verification in F*
	Slide 58: Generating compliant code with LLVM
	Slide 59: Generating compliant code with LLVM
	Slide 60: Summary
	Slide 61
	Slide 62: How to deal with exceptions
	Slide 63: Handling multiple clients simultaneously
	Slide 64: Generating compliant code with LLVM: our solution
	Slide 65: Control-flow linearization
	Slide 66: Data-flow linearization

