
Approach
1. Use verification graph to generate 

embeddings from target and suspect
2. Train a similarity classifier to classify whether 

embeddings are distinct or similar

3. Verification: Use similarity classifier on 
suspect and target embeddings to decide 

Motivation
• Graph Neural Networks (GNNs) are state-of-

the-art on graph data
• Model extraction of GNNs is a realistic threat[1]
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Results
• Zero false-positives / false-negatives across 

different models for both attacks (effective)
• Robust against fine-tuning, double-extraction
    ➞ Adversarial training to mitigate pruning
• Reasonable cost for verifier (efficient)
• No modification of target (non-Invasive)
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Desiderata
Effective: Separates surrogate and independent
Robust: Resists attempts to circumvent
Efficient: Reasonable computational overhead
Non-Invasive: No utility drop for target model

Adversary Model
Blackbox access to embeddings[2]

• Type 1: Knows graph structure and features
• Type 2: Estimates adjacency matrix 

Goal: Train surrogate with high
• accuracy on primary task
• fidelity with target
• surrogate closer to independent than target

[1] Shen et al. Model Stealing Attacks against Inductive Graph Neural Networks. IEEE SP 2022.

[2] Liu et al. False Claims against Model Ownership Resolution. USENIX Sec 2024.

Intuition
• Embeddings are unique for each input graph
• Surrogate and target embeddings are similar

ssg-research.github.io/mlsec/
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Can GNN embeddings be used as fingerprints?

How can we design an ownership verification 
technique for GNNs?

Verifier
• Sample verification graph data from target’s 

data distribution (avoids false claims[2]) 
• Blackbox access to target and suspect


